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equilibrium whose stable manifold determines two basins of attraction, one for each of the



the system

xtþ1 ¼ b1

1

1 þ xt þ c1yt

xt ð1Þ

ytþ1 ¼ b2

1

1 þ c2xt þ yt

yt ð2Þ

where bi . 0 and ci . 0: We denote solutions of this system by ðxt; ytÞ; t ¼ 0; 1; 2; 3; . . .:

(For some results concerning difference equations defined by rational functions see

Refs. [3,4,25]. The results in these papers do not apply to the Leslie/Gower model, however.

Other papers that deal with discrete competition models include [16–19].)

In population dynamic applications we are interested in solutions with non-negative

components xt $ 0; yt $ 0: Let R2
þ z ½0;þ1Þ £ ½0;þ1Þ and �R

2

þ z ð0;þ1Þ £ ð0;þ1Þ

f : ðx; yÞ! b1

1

1 þ x þ c1y
x; b2

1

1 þ c2x þ y
y

� �

takes R2
þ into itself. The same is true of �R

2

þ and of the coordinate axes ½0;þ1Þ £ {0} and

{0} £ ½0;þ1Þ: Moreover, all solutions in R2
þ are forward bounded. Specifically,

f : R2
þ ! S z ½0; b1Þ £ ½0; b2Þ: It follows from Proposition 1 in Ref. [30] that all orbits in

R2
þ approach an equilibrium as t !þ1:

The map f is also invertible on R2
þ; since for ðx

0

; y
0

Þ [ S in the range of f the equations

b1

1

1 þ x þ c1y
x ¼ x

0

; b2

1

1 þ c2x þ y
y ¼ y

0

have the unique solution

x ¼
b2 2 1 þ c1

D
; y ¼

b1 2 1 þ c2

D

where

b1 z
b1

x
0 . 1; b2 z

b2

y
0 . 1; D z ðb1 2 1Þðb2 2 1Þ2 c1c2

(the range of f is defined by the inequality D . 0). The formulas for the pre-images x and y

show the inverse f 21 continuous.

Lemma 1 The map f : R2
þ ! S is one–one and bicontinuous.

The points E0 : ð0; 0Þ; E1 : ðb1 2 1; 0Þ; E2 : ð0; b2 2 1Þ are fixed points of the map f (i.e.

are equilibria of the Leslie/Gower model (1) and (2)). These are “exclusion” equilibria.

The set of points whose x-coordinate is held fixed by the map f is the line x þ c1y ¼

b1 2 1: If this line intersects �R
2

þ (i.e. if b1 . 1), we denote the resulting line segment by L1.

Similarly, if b2 . 1; the points on the line segment L2 from the line c2x þ y ¼ b2 2 1 lying in

R2
þ is the set of points in R2

þ whose y-coordinate is held fixed by the map f. If b1 . 1 the map

f takes a point ðx; yÞ [ R2
þ lying above (below) L1 to a point with smaller (larger)

x-coordinate. If b2 . 1 the map f takes a point ðx; yÞ [ R2
þ lying above (below) L2 to a point

with smaller (larger) y-coordinate.

The only other fixed point of f is

E3 :
b2 2 1

c1c2 2 1
c1 2

b1 2 1

b2 2 1

� �
;

b1 2 1

c1c2 2 1
c2 2

b2 2 1

b1 2 1

� �� �
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This equilibrium lies in R2
þ if and only if b1 . 1; b2 . 1 and L1 and L2 intersect in R2

þ:

This is a “coexistence” equilibrium.

An equilibrium is globally asymptotically stable on R2
þ (or �R 1(or



Cases B and C:

Case B : c1ðb2 2 1Þ , b1 2 1; c2ðb1 2 1Þ , b2 2 1

Case C : c1ðb2 2 1Þ . b1 2 1; c2ðb1 2 1Þ . b2 2 1:
ð5Þ

From these inequalities we find that

c1c2 , 1 holds in Case B

c1c2 . 1 holds in Case C:
ð6Þ

Lemma 3 Assume b1 . 1 and b2 . 1: The equilibrium E



Finally, we consider the equilibrium E3, at which the Jacobian is

J3 ¼

c1c2b1 2 c1b2 þ c1 2 1

b1ðc1c2 2 1Þ
c1

b1 2 c1b2 þ c1 2 1

b1ðc1c2 2 1Þ

c2

2c2b1 þ b2 þ c2 2 1

b2ðc1c2 2 1Þ

2c2b1 þ c2c1b2 þ c2 2 1

b2ðc1c2 2 1Þ

0
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satisfies pð1Þ ¼ 1 2 tr J3 þ det J3 , 0 (because the inequality in (c) is reversed in Case C),

pð21Þ ¼ 1 þ tr J3 þ det J3 . 0 (because (b) holds), and pðþ1Þ ¼ þ1: Thus,



If interspecific competition is too large (one or both inequalities are reversed), then

competitive exclusion occurs. This is the theoretical foundation for the classical competitive

exclusion principle. It is because of this principle that the anomolous case observed in some

of Park’s experiments were puzzling. In the next section, we will study a competition model

which does not support this exclusion principle—a model which in fact predicts (non-

equilibrium) coexistence when the competition coefficients are increased.

A JUVENILE/ADULT RICKER MODEL

Since the Leslie/Gower competition model (1) and (2) has only the Lotka/Volterra dynamics

described in Theorem 4, this model offers no explanation of the multiple attractor case



The exclusion equilibria for Eq. (7) are

E0 : ðJ;A; yÞ ¼ ð0; 0; 0Þ



a coexistence attractor. Figure 2 shows an example. In that figure one initial condition

approaches a coexistence two-cycle, while other initial conditions lead to the extinction

equilibria E1 and E2.

It is possible to prove the existence of coexistence two-cycles of the type observed in Figure 2.

Two-cycles are fixed points of the composite map defined by the model equations (7)

b1ð1 2 mÞJ expð2c11ð1 2 mÞJ 2 b2c12ye2c21J2c22yÞ ¼ J

b1ð1 2 mÞAe2c11A2c12y ¼ A

b2
2ye2c21J2c22y expð2b1c21Ae2c11A2c12y 2 b2c22ye2c21J2c22yÞ ¼ y:

ð8Þ

Although it is not shown in Fig. 2, the coexistence two-cycle in that example is

synchronous, i.e. the two points of the cycle are of the form

ð0;A; y1Þ; ðJ; 0; y2Þ ð9Þ

with J . 0; A . 0; and yi . 0: “Synchronous” means that the juvenile and adult populations

never appear together at the same point in time. The two-cycle equations (8) with J ¼ 0

reduce to the two equations

b1ð1 2 mÞe2c11A2c12y ¼ 1

b2
2e2c21J2c22yexpð2b1c21Ae2c11A2c12y 2 b2c22ye2c21J2c22yÞ ¼ 1



for A and y. Using the first equation in the second we can simplify the second equation

b1ð1 2 mÞe2c11A2c12y ¼ 1

b2
2 exp 2c22y 2 c21

1

1 2 m
A 2 b2c22ye2c22y

� �
¼ 1:

Solving the first equation for

A ¼
1

c11

ðln n 2 c12yÞ ð10Þ

substituting this result into the second equation and simplifying, we arrive at the single

equation

b2c22ye2c22y ¼
c12c21

ð1 2 mÞc11

2 c22

� �
y þ 2 ln b2 2

c21

ð1 2 mÞc11

ln b1ð1 2 mÞ

� �
ð11Þ

for y. A solution y ¼ y1 . 0; together with Eq. (10), yields the first point in a two-cycle (9).

(If A . 0 then this point is not an equilibrium.) The Eq. (11) can be analyzed geometrically

by investigating the graphs of both sides of the equation for intersection points y . 0: The left

hand side is a positive, one humped graph passing through y ¼ 0 and having y ¼ 0 as an

asymptote. The right hand side is a straight line whose slope is positive under the

assumptions in Theorem 5(b) and (c). If the y-intercept of the straight line is positive, then

either there are two intersection points of these graphs, no intersection point at all, or a



To establish the triple attractor case of interest (and observed in Fig. 2) we need to prove

the stability of the two-cycle under the conditions of Theorem 5(b) and (c). The two-cycle is
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