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proportional to a function 

 

E

 

12

 

(

 

t

 

) of deterministic en-
vironmental variables. There are no density-dependent
effects; that is, 

 

E

 

12

 

(

 

t

 

) and 

 

E

 

21

 

(

 

t

 

) do not depend on the
seal density in either compartment.

 

Assumption 3

 

The upper bound 

 

M

 

(

 

t

 

) for the number of seals that may
haul out at the study area during pupping season can
be approximated by:

eqn 1

where 

 

t

 

 is the hour of the day and 

 

β

 

, 

 

γ

 

 and 

 

δ

 

 

 

>

 

 0 are pos-
itive constants. The functional form in this assumption
was suggested by the maximal weekly haul-out counts,
as shown in Fig. 2. Three points should be emphasized.

First, 

 

M

 

(

 

t

 

) is not the population size but is simply a
functional form assumed to describe the upper bound
for the number that haul out at the study area. Seal
monitors use various techniques to estimate population
sizes from haul-out counts (Pitcher & McAllister 1981;
Thompson & Harwood 1990; Moss 1992; Watts 1992;
Huber 1995; Matthiopoulos 

 

et al

 

. 2004) but we did not
address or model population size in this study. Secondly,

 

M

 

(

 

t

 

) is not the normal curve fitted to the data in Fig. 2.
The parameters 

 

β

 

, 

 

γ

 

 and 

 

δ

 

 in equation 1 were estimated,
along with the rest of the model parameters, from cen-
sus time series data as described in the section on model
parameterization. Thirdly, the functional form of 

 

M

 

(

 

t

 

)
depends on the seasonal context. Maximal counts do
not follow a normal curve throughout the year.

 

Assumption 4

 

The system recovers rapidly after disturbance. Spe-
cifically, the values of  

 

M

 

(

 

t

 

), 

 

E

 

12

 

(

 

t

 

) and 

 

E

 

21

 

(

 

t

 

) remain
approximately constant during the time it takes the
system to return to ‘steady state’ dynamics.

 

Assumption 5

 

The main source of noise in the census data is demo-
graphic stochasticity, which can be modelled with a
stochastic ‘birth-and-death’ (arrival-and-departure)
process, as detailed below in the section on the stochastic
model. This assumption was motivated by a post-hoc
inspection of model residuals.

 

  

 

The dynamics of ‘compartmental models’ are typically
described by differential equations of the form:
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Given the first three assumptions, this becomes:

eqn 2

Here 

 

N

 

(

 

t

 

) is the number of seals hauled out at hour 

 

t

 

, 

 

M

 

(

 

t

 

)
is the upper bound for the number that may haul out as
given in equation 1, 

 

E

 

12

 

(

 

t

 

) and 

 

E

 

21

 

(

 

t

 

) are the functions of
environmental variables to be determined, and the para-
meters 

 

a

 

 and 

 

b

 

 

 

>

 

 0 are constants of proportionality. Given
assumption 4, it can be shown by the methods of multiple
time scale analysis (Hoppensteadt 1974; Tikhonov,
Vasil’eva & Sveshnikov 1985; Lin & Segel 1988) that, in
the absence of disturbance, the solution of the differential
equation 2 is well approximated by the algebraic equation:

eqn 3

Note that equation 3 depends on the ratio of the two
environmental functions and the ratio of  the para-
meters 

 

b

 

 and 

 

a

 

. Replacing the ratios in equation 3 by

 

α

 

 

 

=

 

 

 

b/a

 

 and 

 

E

 

(

 

t
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=

 

 

 

E
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(
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)/

 

E

 

12

 

(

 

t

 

), and substituting the
expression for 

 

M

 

(

 

t

 

) from equation 1, yields the deter-
ministic mathematical model:

eqn 4

where 

 

α

 

, 

 

β

 

, 

 

γ

 

 and δ > 0 are constant parameters to be
estimated from data.

  

Noise is ubiquitous in ecological systems. In order to
link the model represented by equation 4 to data, one must
first model the departure of the data from the deter-
ministic predictions. Under assumption 5, the noise
is approximately additive on the square-root scale
(Dennis et al. 2001):

Here the ε(t) are standard normal random variables
uncorrelated in time, and σ > 0 is a constant parameter.
This yields the stochastic model:

eqn 5

The square-root transformation arises as a method of
analysing data from a stochastic birth-and-death pro-
cess. Suppose the number 

http://www.srrb.noaa.gov/
http://co-ops.nos.noaa.gov
http://
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Parameters for each of the 23 alternative models were
estimated from the data using the method of least-
squares (LS) on the square-root scale. The LS method
(as opposed to fitting the Poisson or binomial models
directly with maximum likelihood) relaxes many of the
assumptions about the distribution of the residual
errors (Dennis et al. 2001). In this method the residual
sum of squares (RSS):

is minimized as a function of the vector θ of  model
parameters. Here ‘model prediction’ refers to the pre-
diction generated by the deterministic model given in
equation 4. The minimizer # is the vector of LS para-
meter estimates for the model.

 

When comparing models, one should use a selection
criterion that takes into account the number of parameters

as well as the goodness-of-fit; models having more
parameters should be penalized. The Akaike informa-
tion criterion (AIC) is an information–theoretic model
selection index designed to select the model closest to
the ‘truth’ from a suite of alternative models (Burnham
& Anderson 2002; Peek, Dennis & Hershey 2002;
Gibson et al. 2004; Rushton, Ormerod & Kerby 2004).
For LS parameters the criterion is equivalent to:

AIC = n ln 22 + 2κ

where n is the number of observations, 22 = RSS(#)/n is
the variance of the likelihood function as estimated from
the residuals and κ is the number of model parameters,
including σ2. The candidate model with the smallest
AIC value, denoted AICmin, is the model closest to the
‘truth’. Model comparison is based on relative, rather
than raw, AIC values. Thus, models are ranked accord-
ing to the AIC differences ∆i = AICi – AICmin, with the
best model having ∆i = 0. Models with ∆i > 10 generally
are considered significantly inferior to the best model,
and can be rejected (Burnham & Anderson 2002).

Goodness-of-fit was computed as:

where ‘mean’ denotes the mean of the square-roots of
the observations. This R2 value estimates, on the square-
root scale, the proportion of the observed variability
that is explained by the model. The higher the R2 value,
the better the model fit, with R2 = 1 denoting a perfect fit.

The R2, AIC and ∆i for the suite of candidate models
are shown in Table 1.

Results

The model with the lowest AIC (∆i = 0) and highest
R2 (0·41) was the one with the environmental func-
tion  (Table 1). The model with

 r
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and high tides before the midpoint. Although this rule
of thumb agrees with the model to within approximately
2 h, the exact timings of the maximal and minimal pre-
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Of course, this does not imply that  and E12

= T r. The model equation 6 could have arisen from
many, indeed, infinitely many, differential equations of
the form given in equation 2. Three representative pos-
sibilities are those having:

eqn 7

eqn 8

eqn 9

Equation 7 would imply that seals on the beach
respond primarily to tide height or to a direct correlate
of tide height, while those in the water respond primarily
to current or to a direct correlate of current. This seems
more likely than the situations expressed in equations
8 and 9. In equation 8, seals on the beach respond
primarily to current and those in the water respond
primarily to tide height. In equation 9, seals on the beach
and in the water respond to both tide and current. It
seems unlikely that seals hauled out on the beach respond
directly to current; however, indirect monitoring of
current by these animals may be possible given that
current is roughly the rate of change of tide height with
respect to time (C ≈ dT/dt), depending on local wind
conditions, river discharges, basin shapes, and coastal
geometries (Anonymous 1983; Duxbury, Duxbury &
Sverdrup 2000). It was not possible to choose among
equations 7–9 on the basis of the present data set. Iden-
tification of the individual functions E12(t) and E21(t)
requires observation of seal numbers post-disturbance,
with data collected on a temporal scale much finer than
1 h as the animals return to the beach.

Assuming the situation described by equation 7, the
following functional hypothesis is suggested for seals
that use the north beach of Protection Island as a haul-
out site. Food availability peaks at flood current, which
corresponds with low haul-out numbers. Hauled-out
seals use falling tide levels as a cue to leave the beach to
feed, a trend that continues until the midway point between
low and high tides, when few or no seals remain on the
beach. A decline in flood current, however, signals a
decline in food availability so seals return to the beach.

The relationship between current and patterns of
harbour seal movement has received little attention.
Thompson et al. (1989), however, noted that harbour
seals using haul-out sites in the vicinity of Eynhallow
Sound, Orkney, UK, appeared to pattern their haul-
out behaviours differently depending on whether the
tide was rising (incoming current) or falling (outgoing
current). They hypothesized that seals that spent less
time on shore during rising tides were responding to
increases in food availability brought about by in-
coming flood tides. Their observations and hypothesis
are consistent with the model predictions presented
here for seals using Protection Island.

It is of interest that models using Ce yielded better
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and hour of the day, the model can be used to make long-
range predictions of habitat occupancies.
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