
This article was downloaded by:[University of Arizona]
On: 8 November 2007
Access Details: [subscription number 770844067]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Biological Dynamics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t744398444

Multiple mixed-type attractors in a competition model
J. M. Cushing a; Shandelle M. Henson b; Chantel C. Blackburn a
a Department of Mathematics, University of Arizona, Tucson, AZ, USA
b Department of Mathematics, Andrews University, Berrien Springs, MI, USA

Online Publication Date: 01 October 2007
To cite this Article: Cushing, J. M., Henson, Shandelle M. and Blackburn, Chantel C.
(2007) 'Multiple mixed-type attractors in a competition model', Journal of Biological
Dynamics, 1:4, 347 - 362
To link to this article: DOI: 10.1080/17513750701610010
URL: http://dx.doi.org/10.1080/17513750701610010

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t744398444
http://dx.doi.org/10.1080/17513750701610010
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f A
riz

on
a]

 A
t: 

17
:3

8 
8 

N
ov

em
be

r 2
00

7 

Journal of Biological Dynamics
Vol. 1, No. 4, October 2007, 347–362

Multiple mixed-type attractors in a competition model

J. M. CUSHING*†, SHANDELLE M. HENSON‡ and CHANTEL C. BLACKBURN†

†Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA
‡Department of Mathematics, Andrews University, Berrien Springs, MI 49104, USA

(Received 9 February 2007; in final form 9 February 2007)

We show that a discrete-time, two-species competition model with Ricker (exponential) nonlinearities
can exhibit multiple mixed-type attractors. By this is meant dynamic scenarios in which there are
simultaneously present both coexistence attractors (in which both species are present) and exclusion
attractors (in which one species is absent). Recent studies have investigated the inclusion of life-
cycle stages in competition models as a casual mechanism for the existence of these kinds of multiple
attractors. In this paper we investigate the role of nonlinearities in competition models without life-cycle
stages.
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1. Introduction

In [1] the authors utilize a competition model to explain an unusual coexistence result observed
and studied by T. Park and his collaborators in a series of classic experiments involving two
species of insects (from the genus Tribolium) [2–4]. The explanation offered in [1] is based on
a single species model (called the LPA model) designed explicitly to account for the dynamics
of the species involved. The LPA model has an impressive track record, spanning several
decades, of describing and predicting the dynamics of Tribolium populations, under a variety
of circumstances in controlled laboratory experiments—dynamics that range from equilibrium
and periodic cycles to quasi-periodic and chaotic attractors [5, 6]. This history of success adds
credence to the two-species competition model used in [1] (called the competition LPAmodel)
and significant weight to the explanation given for the observed case of coexistence. The
explanation entails, however, some unusual aspects with regard to classic competition theory,
including non-equilibrium dynamics, coexistence under increased intensity of inter-specific
competition, and the occurrence of multiple mixed-type attractors. By multiple mixed-type
attractors we mean a scenario that includes at least one coexistence attractor and at least
one exclusion attractor. A coexistence attractor is one in which both species are present. An
exclusion attractor is one in which at least one species is absent and at least one species is
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348 J. M. Cushing et al.

present. Park observed the coexistence case in an experimental treatment that also included
cases of competitive exclusion, that is to say, he observed a case of what we have termed to
be multiple mixed-type attractors.

Competition theory is primarily an equilibrium theory that is exemplified, for example,
by the classic Lotka–Volterra model and its limited number of asymptotic outcomes: a glob-
ally attracting coexistence equilibrium; a globally attracting exclusion equilibrium; or two
attracting exclusion equilibria. (In this context, globally attracting means within the positive
cone of state space.) These three equilibration alternatives are illustrated by the Leslie–Gower
model [7] (the discrete analog of the famous Lotka–Volterra differential equation model)

xt+1 = b1xt
1

1 + c11xt + c12yt
+ s1xt

yt+1 = b2yt
1

1 + c21xt + c22yt
+ s2yt

(1)

where t = 0, 1, 2, . . . and the bi > 0 are the inherent birth rates, si (0 ≤ si < 1) the survival
rates, and cij > 0 the density-dependent effects on newborn recruitment [8–10]. Leslie et al.
used this model to study the Tribolium experiments, but it is incapable of explaining the
observed case of multiple mixed-type attractors. On the other hand, the competition LPA
model used in [1] exhibits a greater variety of competition scenarios, including ones with
multiple mixed-type attractors (also see [11, 12]).

The competition LPA model, although applied specifically to species of Tribolium in [7], is
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Multiple mixed-type attractors 349

We provide formal proofs of this possibility (mathematical details appear in the Appendix) for
the case of 2-cycle and equilibrium scenarios. An investigation for scenarios involving higher
period cycles (or quasi-periodic or chaotic attractors) remains to be carried out, although
we give in section 4 a numerical example involving higher period cycles and quasi-periodic
attractors.

2. Equilibria

We can assume without loss in generality (by scaling the units of x and y) that cii = 1 in the
Ricker competition model (2). Therefore, we will consider, after relabeling c12 as c1 and c21

as c2, the competition model

xt+1 = b1xt exp(−xt − c1yt ) + s1xt

yt+1 = b2yt exp(−c2xt − yt ) + s2yt .
(3)

The exclusion equilibria E1 � (ln n1, 0), E2 � (0, ln n2) ∈ R2 of the Ricker competition
model (3) are biologically feasible (i.e. lie on the positive axes) if and only if the inher-
ent net reproductive numbers ni � bi/(1 − si) satisfy ni > 1. Besides the trivial equilibrium
E0 � (0, 0) and these two exclusion equilibria, there exists only one other equilibrium:

E3 �
(

ln n1 − c1 ln n2

1 − c1c2
,

ln n2 − c2 ln n1

1 − c1c2

)
. (4)

The equilibrium E3 is a coexistence equilibrium if it lies in the positive cone R2+ � {(x, y) :
x > 0, y > 0}. Let S � {(s1, s2) ∈ R2 : 0 ≤ s1, s2 < 1} denote the unit square in R2.

LEMMA 2.1 Assume (s1, s2) ∈ S. Let (xt , yt ) denote the solution of the Ricker competition
model (3) with an initial condition (x0, y0) lying in the closure R̄2+ of R2+. If n1 < 1 then
limt→+∞ xt = 0. If n2 < 1 then limt→+∞ yt = 0.

Proof If n1 < 1 then all solutions of the linear equation ut+1 = b1ut + s1ut satisfy
limt→+∞ ut = 0. From the inequality 0 ≤ xt+1 ≤ b1xt + s1xt and u0 = x0, an induction
shows 0 ≤ xt ≤ ut for all t = 0, 1, 2, . . .
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350 J. M. Cushing et al.

of an exclusion equilibriumEi (i = 1 or 2) of the competition equations (3) is that the inherent
net reproductive numbers ni satisfy

1 < ni < ncri � exp(2/(1 − si)). (5)

The linearization principle provides sufficient conditions for stability according to the magni-
tude of the eigenvalues of the Jacobian J (x, y) associated with (3) evaluated at an equilibrium
point Ei = (xe, ye):

J (xe, ye) =
(

1 − (1 − s1)xe − c1(1 − s1)xe
− c2(1 − s2)ye 1 − (1 − s2)ye

)
. (6)

The Jacobians of the equilibria Ei , i = 1 or 2, are triangular matrices whose eigenvalues
appear along the diagonal. The equilibrium Ei , i = 1 or 2, is hyperbolic if both eigenvalues

(1 − si)(1 − ln ni) + si, bjn
−cj
i + sj , j �= i

have absolute value unequal to 1 and, by the linearization principle [15], is (locally asymptoti-
cally) stable if both have absolute value less than 1. Thus, a necessary condition that Ei be
hyperbolic and stable is that

cj > ln nj/ ln ni, j �= i. (7)

Sufficient for Ei to be hyperbolic and stable is that, in addition, the inequalities (5) hold.

T

(77)
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Multiple mixed-type attractors 351

in more complicated models that include juvenile life-cycle stages [1, 8, 11, 13, 14]). To carry
out this investigation by means of a single parameter problem, we introduce the notation
r � c2/c1, c � c1 and re-write the competition model (3) as

xt+1 = n1(1 − s1)xt exp(−xt − cyt ) + s1xt

yt+1 = n2(1 − s2)yt exp(−rcxt − yt ) + s2yt

ni > 1, 0 ≤ si < 1, and r, c > 0.

(8)

Our goal is, for fixed birth rates bi , survivorships si and competition ratio r , to investigate
the existence and stability of non-equilibrium coexistence attractors as functions of the inter-
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Multiple mixed-type attractors 353

then used to estimate the bifurcation value c∗ of the bifurcating 2-cycles generated by the
solution branch (x, y, c) = (x, y(x), c(x)). In that analysis, attention is restricted to b1 lying
on the interval

I � {b1 : 1 − s1 < b1 < bcr1 }, bcr1 � (1 − s1) exp(2/(1 − s1)).

For b1 ∈ I the Ricker equation xt+1 = n1(1 − s1)xt exp(−xt − cyt ) + s1xt has a stable
equilibrium.

THEOREM 3.2 Assume (s1, s2) ∈ S and b1 ∈ I . If b2 � bcr2 , then a branch of coexistence
2-cycles bifurcates from the exclusion 2-cycle (13) at c = c



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f A
riz

on
a]

 A
t: 

17
:3

8 
8 

N
ov

em
be

r 2
00

7 

354 J. M. Cushing et al.

(1) (s
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Multiple mixed-type attractors 355

assumption means that the survivorship s1 of species x is larger than the survivorship s2 of
species y. Therefore, Theorem 3.4 requires that there be an asymmetry between the two species
in the sense that one species has a high reproductive rate and low survivorship in contrast to the
other species, which has a low reproductive rate and a high survivorship. Figure 2 illustrates
the existence of multiple mixed-type attractors under these conditions.

Theorem 3.4 implies the local bifurcation of stable coexistence 2-cycle only for c sufficiently
large, namely, near the critical point c∗. An interesting question concerns the global extent
of this bifurcating branch of 2-cycles. What is the ‘spectrum’ of c values for which these
coexistence 2-cycles occur? Numerous numerical explorations have shown that the bifurcation

Figure 2. Each plot shows a solution of the Ricker competition model (8) with b1 = 8, b2 = 10, s1 = 0.65, s2 = 0,
r = 1.1 and c = 1.9. In plot (a) the initial conditions (x0, y0) = (0.2, 3.5) lead to competitive exclusion. In (b) the
initial conditions (x0, y0) = (0.19, 3.5) lead to a competitive coexistence 2-cycle. See figure 3(a).

Figure 3. A sequence of phase plane plots shows the bifurcation of stable coexistence 2-cycles from the exclusion
2-cycles on the y-axis in the Ricker competition model (8) as the competition coefficient c decreases through the
critical value c∗ ≈ 2.35. Model parameters are b1 = 8, b2 = 10, s1 = 0.65, s2 = 0, and r = 1.1. Plot (a) shows a
sequence of stable 2-cycles (open circles with connecting lines) that eventually destabilize and give rise to stable,
double invariant loops as shown in plot (b). In plot (c) the double invariant loops eventually collide, under further
decreases in c, and undergo a global, heteroclinic bifurcation involving the (saddle) coexistence equilibrium, the
exclusion (saddle) equilibrium, the exclusion (saddle) 2-cycle located and their stable and unstable manifolds. For
the parameter values in these plots, the exclusion equilibrium E1 : (x, y) ≈ (22.86, 0) is also stable and hence these
plots contain multiple mixed-type attractors.
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356 J. M. Cushing et al.

Figure 4. Each graph shows a solution of the Ricker competition model (8) with b1 = 8, b2 = 10, s1 = 0.65,
s2 = 0, r = 1.1 and c = 1.8. In plot (a) the initial conditions (x0, y0) = (0.12, 3.5) lead to competitive exclusion. In
plot (b) the initial conditions (x0, y0) = (0.01, 3.5) lead to a competitive coexistence quasi-periodic oscillation (see
figure 3(b, c)).

sequence displayed in figure 3 is typical.As c decreases, and the coexistence 2-cycles bifurcate
from the exclusion 2-cycle on the y-axis at c = c∗, there exists a second critical value of c at
which the coexistence 2-cycles lose stability because of an invariant loop (Sacker/Neimark or
discrete Hopf ) bifurcation. The resulting coexistence (double) invariant loops persist until c
reaches a third critical value at which the loops disappear in a global heteroclinic bifurcation.
See figures 3 and 4.

In this paper we have shown that the Ricker competition model (8) cannot display a multiple
mixed-type attractor scenario with only equilibria. On the other hand, Theorem 3.4 shows that
multiple mixed-type attractor scenarios are possible with non-equilibrium attractors, specif-
ically, with stable competitive exclusion equilibria and stable coexistence 2-cycles. Multiple
mixed-type attractors scenarios are also possible for model (8) that involve other combi-
nations of higher period cycles, quasi-periodic (as in figure 4) and even chaotic attractors.
Figure 5 shows one example. The analysis of such multiple attractor cases remains an open
problem.

Figure 5. A sequence of phase plane plots shows the bifurcation of stable coexistence 4-cycles from the exclusion
4-cycles on the y-axis in the Ricker competition model (8) as c decreases from the critical value c∗ ≈ 4.77. Model
parameters are b1 = 8, b2 = 14, s1b56(∈⇒[|∩/4;rc][J∞a337.′578 ′ [=∩(8,⇒[|∩/F4 ∞ [{∩∞.′58∞ ′ [=∩(b⇒[673 8∞′
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β > bk−1e−1/(1 − s), any solution ut satisfies ut < β for all large t . By (A1) it follows that
there exists a t∗ = t∗(z0) ≥ 1 such that

z
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Proof of Theorem 3.2 Define z = y − y∗
0 and w = c − c∗ and re-write the composite, fixed

point equations (15) as

p(x, z,w) = 0, q(x, z, w) = 0 (A5)
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b2 = bcr2 + β1ε + β2ε
2 + O(ε3)
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Since 	0 > 0 for (s1, s2) ∈ S, the sign of 	 in (A9) depends on that of 	1, which in turn
is the sign of the factor m(ln n1). The term m(ζ) is a quadratic polynomial in ξ


